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Abstract

A power mode method for the estimation of the power transmitted to a flexible receiver by an array of
point force excitations is described. The vibrational power transmitted by N discrete point forces is
regarded as the power transmitted by N independent power modes following eigendecomposition of the
mobility matrix of the receiving structure. Approximate expressions for the upper and lower bounds and
the mean value of the transmitted power are then developed in terms of these power modes. The approach
is extended to more general cases, including that where both force and moment excitations are applied to
the structure and where there are velocity source excitations. Numerical examples are presented.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

An issue which is frequently the focus of noise and vibration control procedures is the
prediction and control of the power transmitted from a resiliently mounted machine to its flexible
foundation. However, the prediction of the transmitted vibration power is problematical due to
the complex nature of both source and receiver [1]. For example, an exact description of the power
transmitted to a flexible receiver by an array of force/velocity sources requires full knowledge of
both the strength of the source excitations and the dynamic properties of the receiver. In practice,
the mobilities of the source may be important. Only under ideal, limiting cases, such as are
considered here, can those source mobilities be neglected. Problems then arise if there is a large
number of excitation points and/or for cases where the required data are not known to sufficient
accuracy.
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It is often more appropriate to approximate the main properties of the dynamic behaviour of a
vibratory system, e.g., the frequency average power, rather than attempt to precisely predict the
detailed response. Various methods [2–5] have been developed to approximate the power
transmitted from a machine to a flexible receiver. However, there are limitations to these
techniques. In this paper an alternative technique, the power mode method, is described. A set of
force sources is transformed into arrays of force distributions. The transformation involves the
eigenvalues and eigenvectors of the real part of the mobility matrix of the receiver. As a result, the
vibrational power transmitted by N forces can be considered as being transmitted by N

independent contributions, with each of them related only to one set of force distribution
(eigenvector) and one eigenvalue. Thus N terms contribute to the power, rather than the N2 terms
involving the original forces. This power mode approach was first suggested in Ref. [4]. Here it is
further extended and approximations are developed for the maximum and minimum possible
values and the mean value of the transmitted power.
The ‘‘multipole’’ approach of Ref. [2] is somewhat similar, except that the transformation

matrices are pre-selected ‘‘Hadamard’’ matrices, so that the polar mobilities can be regarded as
monopole, dipole, quadrupole terms, etc. Using this approach, the power injected by many of the
cross terms is often negligible. However, the receiver structure must be geometrically symmetrical
or the source is a set of uncorrelated outputs.
There are two main advantages to the power mode approach. Firstly, it allows expressions for

the upper and lower bounds and the mean value of the transmitted power to be developed in a
simple manner. Secondly, this approach can be used for cases where both force and moment
excitations are involved.
In the next section the power mode theory is developed for an array of point forces applied to a

region of a structure whose properties are uniform and homogeneous. Then various
approximations are developed. Following this, more general situations are considered. These
include the case of combined force and moment sources and that of velocity source excitations.
Finally some numerical examples are presented.

2. Power mode theory

Suppose an array of N time harmonic forces is applied to a structure at a frequency o: The
time-averaged power transmitted to the receiver can be expressed as

P ¼ 1
2
RefFHVg; V ¼ %MF; ð1Þ

where F is the vector of amplitudes of the forces, V is the vector of amplitudes of the velocities of
the receiving structure at the excitation points, %M is the complex mobility matrix of the receiver
structure, and the superscript H denotes the conjugate transpose. Eq. (1) can be written as

P ¼ 1
4
RefFHV þ VHFg ¼ 1

4
RefFHð %M þ %M

HÞFg: ð2Þ

Since ð %M þ %M
HÞ ¼ 2 Ref %Mg; the transmitted power becomes

P ¼ 1
2
FHMF; ð3Þ
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where M is the real part of the complex mobility matrix %M: Eq. (3) shows that the power
transmission depends only on the real part of the mobility matrix, whose imaginary part can
therefore be ignored as far as power transmission is concerned.
Since Eq. (3) is in a non-negative definite quadratic form, M is a real, symmetric and non-

negative definite matrix. By matrix theories [6,7], M can be decomposed into the form

M ¼ WKWT; ð4Þ

where K is a real and non-negative diagonal matrix of the eigenvalues ln of M, W is the orthogonal
matrix composed of the corresponding eigenvectors (in columns), so that WWT ¼ WTW ¼ I; and
the superscript T denotes the transpose. The eigenvalues are arranged in descending order, i.e.,

l1Xl2X � � �XlNX0: ð5Þ

The eigenvalues satisfy the following relations [7]:XN

n¼1

ln ¼
XN

n¼1

Mnn; ð6Þ

XN

n¼1

l2n ¼
XN

m¼1

XN

n¼1

M2
mn ¼ jjM jj2; ð7Þ

where jjM jj2 is the second order norm of matrix M. From Eqs. (6) and (7), the mean value of ln

and its standard deviation s are found to be

%l ¼
XN

n¼1

Mnn=N; ð8Þ

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjM jj2

N
	

1

N2

XN

n¼1
Mnn

� �2r
: ð9Þ

Let the force vector F now be weighted by W so as to give a new set of forces defined by

Q ¼ WTF: ð10Þ

It follows that XN

n¼1

jQnj2 ¼
XN

n¼1

jFnj2: ð11Þ

Combining Eqs. (3), (4) and (10), the power transmitted to the receiver can then be re-written as

P ¼
1

2
QHKQ ¼

1

2

XN

n¼1

jQnj2ln: ð12Þ

Eq. (12) shows that the vibrational power transmitted to the receiver by N forces can be
regarded as the power transmitted by N independent contributions, each of them related only to
one set of force distribution (eigenvector) and one eigenvalue. In Ref. [8], ‘‘radiation modes’’ have
been used to describe the power radiated by a vibrating surface into a surrounding acoustic
medium, in which the sound power radiation from a set of velocity distribution (radiation mode)
on the structure is independent of the amplitudes of the other velocity distributions. Therefore, by
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analogy to the ‘‘radiation modes’’, Eq. (12) may be defined as a set of independent ‘‘power
modes’’. The force vector Q may thus be called power mode force vector, which is given in terms
of F and the eigenvectors of the real part of the mobility matrix, and the eigenvalue ln called
power mode mobilities. Eq. (12) is in contrast to Eq. (3) where the power is given by sum of N2

terms involving the physical forces F.
Conceptually, Eq. (12) is useful. However, it does not provide any practical advantages over

Eq. (3) since full knowledge of M is required to determine its eigenproperties. However,
advantages do occur because simple approximations can be developed for the transmitted power
based on power mode theory. These are developed in the next section.

3. Power transmission approximation based on the power mode approach

As mentioned in Section 1, it is often more appropriate to approximate the main properties of
the transmitted power rather than attempt to predict precisely the detailed response, especially if
the properties of the receiver structure are not known exactly. Therefore in this section the power
mode theory is used to find simple approximations of the transmitted power. These give estimates
of upper and lower bounds for the transmitted power, as well as its mean value. The actual power
thus lies in some range between these upper and lower bounds.

3.1. Upper and lower bounds of the transmitted power

Expressions for the upper and lower bounds of the transmitted power can be derived
from power mode theory. Combining Eqs. (5), (11), and (12), strict upper and lower bounds are
given by

Pup ¼
1

2

XN

n¼1

jFnj2
 !

l1; ð13Þ

Plow ¼
1

2

XN

n¼1

jFnj
2

 !
lN : ð14Þ

It is seen that the bounds on power depend only on the maximum and minimum power mode
mobilities of the receiver structure l1 and lN as well as the magnitudes of the force sources jFnj;
regardless of the distribution and the relative phases of the force sources [4]. Therefore, it is a good
simplification to estimate the transmitted power using upper and lower bounds. Since the
usefulness of such an approximate approach depends on the width of the range formed by the
upper and lower limits, Eqs. (13) and (14) are very suitable for cases where the maximum and
minimum power mode mobilities of the receiver structures are comparable.
Generally, the correlation between the individual excitation points of the receiver becomes of

decreasing importance as the wavelength of the structure decreases. Therefore when the
wavelength of the receiver structure is very short, it is reasonable to neglect the correlations
between the individual excitations, at least when frequency averaged, so that each individual
excitation is taken to be independent. If it is also assumed that the local driving point properties of
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the receiver have the same order of magnitude, the eigenvalues ln typically are then of the same
order of magnitude. As a result, both l1 and lN will often lie within, say, one standard deviation
of the mean %l; so that they can be simply approximated, using Eqs. (8) and (9), as

l1Eð%lþ sÞ; ð15Þ

lNEð%l	 sÞ: ð16Þ

As a result, Eqs. (13) and (14) can be re-written as

PupE
1

2

XN

n¼1

jFnj
2

 !
ð%lþ sÞ; ð17Þ

PlowE
1

2

XN

n¼1

jFnj
2

 !
ð%l	 sÞ: ð18Þ

So far the upper and lower bounds for the power transmitted to a short-wavelength structure
can be approximated using Eqs. (17) and (18). In such cases, many or all power modes contribute
significantly to the transmitted power rather than just a few of them. In particular, when the
receiver structure is very flexible (e.g., such that klb1 where k is the wavenumber and l the
distance between the excitation points), so that each forcing point can be taken as uncorrelated
with the others, the power mode mobilities and the power mode forces can be simply
approximated by

lnEMnn; ð19Þ

QnEFn: ð20Þ

Eq. (12) then becomes

PE
XN

n¼1

1

2
jQnj

2ln

� 	
E
XN

n¼1

1

2
jFnj

2Mnn

� 	
: ð21Þ

The above expression indicates that each power mode contributes significantly to the total
power transmission at high frequencies.
In other cases, however, e.g., if the wavelength is very long, individual excitations may be

strongly correlated. For example, when the response is dominated by a single resonant mode, then
at the resonant frequency, the driving point mobility tends to be quite close to the transfer
mobility [2], i.e.,

O½Mnn�EO½Mmn�; man: ð22Þ

Here it is still assumed that the local driving point properties of the receiver have same orders of
magnitude. As a result, the maximum power-mode mobility l1 can be much larger than the
minimum one lN ; which implies that only a few of the lower power modes give significant power
transmission. Then the power range formed by Eqs. (13) and (14) will be too broad to be of
practical value, due to a very small lower bound. Under such circumstances, it is more useful to
replace the lower bound by the approximation for the power associated with only the first power
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mode which plays a dominant role in the total power transmission, while the upper bound is still
approximated using Eq. (17).
Eq. (22) implies that the eigenvector w1 has the approximate form

w1 ¼
1ffiffiffiffiffi
N

p ½1 1 ? 1�T: ð23Þ

When l1 is still approximated using Eq. (15), the power transmitted by the first power mode can
then be approximated as

P1E
1

2N

XN

n¼1

Fn

�����
�����
2

ð%lþ sÞ: ð24Þ

Thus the power transmitted to a long-wavelength receiver can be estimated using the range
formed by Eqs. (17) and (24).
Especially in the very low-frequency range where kl5l; all forces are in effect applied at same

point. It then follows that

l1E
XN

n¼1

Mnn; l2;3;:::;NE0; ð25Þ

jQ1j2E
1

N
jF1 þ F2 þ � � � þ FN j2: ð26Þ

Eq. (12) then becomes

PE1
2
jQ1j2l1E

1

2

XN

n¼1

Fn

�����
�����
2

0
@

1
AXN

n¼1

Mnn=N: ð27Þ

Eq. (27) shows that in the low-frequency range the power can be regarded as being transmitted
by the first order power mode only, i.e., one power mode dominates. This is similar to the
monopole in the multipole approach.

3.2. Mean value of the transmitted power

In the above subsection, upper and lower bounds of the transmitted power were found
which define a fairly narrow range within which the transmitted power lies. It is also useful
to estimate the mean value of the power over a range of frequencies. An estimate of the
mean value of the transmitted power can be found by taking the average over all the power
modes.
The mean square power mode force can be found from Eq. (11) to be

E½jQnj2� ¼
1

N

XN

n¼1

jFnj2: ð28Þ

The mean power modal mobility is given by Eq. (7). The mean value of the transmitted power,
when averaged over all the power modes, can thus be approximated in terms of the mean square
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force and the mean point mobility as

E½P� ¼
N

2

1

N

XN

n¼1

jFnj2
 !

1

N

XN

n¼1

Mnn

 !
: ð29Þ

Eq. (29) is in a very simple form, being equivalent to approximating the mean of a product by
the product of their means, and gives an estimate of the frequency average of the transmitted
power. This result was also given in Ref. [3].
Thus the power transmitted to a receiver structure by an array of point forces can be described

in terms of upper and lower bounds and a mean value.

4. Combined force and moment excitations

The translational motion normal to the surface of the seating is usually the dominant
mechanism of power transmission from a machine source to a flexible supporting structure [3].
However, it is known that in many cases of practical interest, vibration sources apply moments as
well as forces. The power transmitted by moment excitations is generally greater at higher
frequencies [9,10]. Therefore it is necessary to consider also moment excitations.
Suppose the source array F is formed partly by a set of forces and partly by a set of moments.

The real part of the mobility matrix M of the receiver structure is now composed of force and
moment point mobilities and transfer mobilities, and the transmitted power can be written in the
same form as Eq. (3). However, since both F and M consist of elements with different units, the
approximations developed in Section 3 are no longer applicable. In this section, a scaling
technique to deal with this problem is described. The main principle of this scaling technique is to
scale the mobility matrix M by a specified diagonal matrix to give a new ‘‘dimensionless’’ matrix,
and then to weight the physical force vector using the same diagonal matrix to give a new set of
forces with the same units. As a result, the power mode approach described in the previous
sections can then be applied.
Let M be scaled by such a real diagonal matrix DC defined as

DC;nn ¼
1ffiffiffiffiffiffiffiffiffi
Mnn

p ; ð30Þ

where DC;nn and Mnn are the nth diagonal elements of DC and M, respectively, so that

MC ¼ DCMDC : ð31Þ

Let F be weighted by DC
	1 so as to give a new set of forces defined by

FC ¼ D	1
C F: ð32Þ

Combining Eqs. (31) and (32) with Eq. (3) gives

P ¼ 1
2
FH

CMCFC : ð33Þ

Since the scaled mobility matrix MC is real, symmetric, non-negative and dimensionless and FC

is a vector of the scaled forces with the same units, Eq. (33) then meets all the requirements of the
power mode theory.
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MC is decomposed into the form

MC ¼ WCKCWT
C ; ð34Þ

where KC is the real and non-negative diagonal matrix of the eigenvalues of MC ; and WC is the
orthogonal matrix composed of the corresponding eigenvectors (in columns). Let the scaled force
vector FC be weighted by WC : A new set of scaled power mode forces can then be written as

QC ¼ WT
CFC ¼ WT

CD	1
C F: ð35Þ

Consequently, Eq. (33) can be written in terms of the power modes as

P ¼ 1
2
QH

CKCQC ¼
1

2

XN

n¼1

jQC;nj2lC;n; ð36Þ

where lC;n is the nth diagonal element of KC :
As a result, approximate expressions for the upper and lower bounds as well as the mean value

are then developed by analogy with Eqs. (17), (18) (or Eq. (24)) and Eq. (29), with F being
replaced by FC and M by MC :
The above scaling technique in effect scales the individual excitations by a factor equal to the

square root of the real part of the input mobility so that the elements of FC have the same units.
An alternative scaling procedure can be used, with the scaling matrix DC;n being given by

DC;nn ¼
1ffiffiffiffiffiffiffiffiffiffi
MN

nn

p ; ð37Þ

where MN

nn is the characteristic point mobility of the receiver structure, i.e., the point mobility if
the receiver structure is extended to infinity. Comparing Eq. (30) with Eq. (37), it can be expected
that the former gives better estimates of the transmitted power while the latter allows for
uncertainties in the properties of the receiver structure, e.g., the boundary conditions.
Since the scaling matrices described in Eqs. (30) and (37) are all frequency-dependent, different

scaling matrices may have different influences on the performance of the power approximations.

4.1. Other cases

Similar results can be obtained for velocity/rotational velocity excitations in the same manner
as that described above for force/moment sources. In this case, however, the mobility matrix of
the receiver structure is replaced by the corresponding impedance matrix, with the roles of the
force and velocity vectors being reversed.
In some cases there may also be force excitations which act in different directions on the

receiver (e.g., in-plane and out-of-plane forces), so that the corresponding input mobilities Mnn

may have different orders of magnitude—in-plane motion is usually much stiffer than out-of-
plane motion, for example. If such excitations input significant power, then this situation can be
treated using the same scaling approach described above.

ARTICLE IN PRESS

L. Ji et al. / Journal of Sound and Vibration 265 (2003) 387–399394



5. Numerical examples

Numerical examples are considered in this section. The system model chosen is a thin
rectangular plate with four simply supported edges. The plate has a length of 2m in the x
direction, a width of 0.9m in the y direction and a thickness of 0.005m. The chosen material of the
plate is perspex with a Young’s modulus of 4.4� 109N/m2, a density of 1152 kg/m3, a material
loss factor of 0.05 and the Poisson ratio of 0.38. The plate is first assumed to be excited by point
forces, and then by co-located force/moment excitations. A running frequency average has been
taken over a frequency band of width three times the mean modal spacing, to illustrate the
broader features of the power transmission. The exact results are found using Eq. (3), i.e., the
classical mobility matrix method.

5.1. Plate with force excitations

First the plate is assumed to be excited by three-point forces F1 ¼ 1; F2 ¼ 2ejp=3 and F3 ¼
0:5e	jp=4; located at ðx1; y1Þ ¼ ð0:37; 0:45Þm, ðx2; y2Þ ¼ ð0:89; 0:45Þm and ðx3; y3Þ ¼ ð1:34; 0:45Þm,
respectively. Since here there are three-point forces, there are consequently three power modes.
Using Eq. (4) a receiver structure can be characterized by a set of power mode mobilities. Fig. 1

shows the three power mode mobilities of the plate as a function of frequency. The first power
mode tends to be much larger than the others at lower frequencies, but becomes comparable to
the other power mode mobilities as frequency increases. This implies that the transmitted power is
dominated by the first power mode at lower frequencies while more power modes give significant
contributions at higher frequencies.
This trend is further illustrated in Fig. 2, which shows the power transmitted by each power

mode together with the total power. It can be seen that the power transmitted by the first power
mode dominates the total power transmission for the low modal overlap area (e.g., below 70Hz
where the modal overlap factor is less than unity), but the significance of the other two power
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Fig. 1. Power mode mobilities of the plate: first order (——), second order (......), and the third order (– – –).
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modes increases as the modal overlap of the receiver increases. Therefore, it is quite reasonable to
estimate the lower power bound using the first power mode approximation for a stiff and low
modal overlap receiver. It should be noted that the power associated with an individual power
mode depends on both the power mode mobility and the corresponding power mode force, the
latter being determined by not only the excitation forces themselves, but also the forcing positions,
as given in Eq. (10). Thus there may be a small power mode mobility and a large power mode
force, or vice versa. As a result, the lower order power modes do not necessarily transmit more
power than the higher order ones, as shown in Fig. 2.
In Section 3, approximations for the upper and lower bounds and the mean of the transmitted

power were developed. Fig. 3 shows the power transmitted to the plate together with these
approximations. It can be seen that the mean power expression in Eq. (29) gives a fairly good
approximation to the transmitted power. The upper and the lower bounds expressed by Eqs. (17)
and (18) are very useful approximations for the transmitted power, provided the modal overlap
factor of the receiver structure is high enough (e.g., more than 3 (above 200Hz) in Fig. 3). Below
this frequency the lower bound is more accurately approximated by the power transmitted by the
first power mode, given in Eq. (24).

5.2. Simultaneous force/moment excitations

The power mode approach can be applied to cases where both force and moment excitations
are involved using the scaling technique described in Section 4. This is investigated here by
assuming the point force sources comprise not only the forces of the previous example, but also
consist of co-located moment excitations Mx1 ¼ 0:05Nm, Mx2 ¼ 0:075ej2p=3N m and
Mx3 ¼ 0:05jNm. Fig. 4 shows the power transmitted to the plate and the approximations when
the scaling matrix of Eq. (30) is used. It is seen that the bounds provide a narrow range for the
power and the mean value is a good approximation.
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Fig. 5 shows the power transmitted to the plate and the approximations when the scaling matrix
of Eq. (37) is used. It is seen that the expressions plotted in Fig. 4 give better estimates of the
transmitted power than Fig. 5, as would be expected. This is because the scaling approach for
Fig. 4 needs exact information of the point mobilities Mnn of the receiver, but the scaling
approach for Fig. 5 only needs the characteristic point mobility terms MN

nn of the receiver.
However, the latter scaling approach can be more useful when the receiver structures have some
uncertainties, e.g. boundary condition uncertainties.
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6. Concluding remarks

In this paper a power mode method for estimating the power transmitted to a flexible receiver
by an array of point force excitations was described. Based on power mode theory, the vibrational
power transmitted by N discrete point forces was regarded as the power transmitted by N

independent power modes following eigendecomposition of the real part of the mobility matrix of
the receiving structure. Simple expressions were developed for approximating the upper and lower
bounds and the mean value of the transmitted power in terms of these power modes. It also has
been shown that these approximations can be extended to more general cases, including that
where both force and moment excitations are applied to the structure and where there are velocity
source excitations. Finally, numerical results were presented for the case of a plate excited at a
number of points.
This power mode technique is currently being further developed to approximate the vibration

power transmission between a stiff source and a flexible receiver through discrete couplings.
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